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Summary: A new, high yield, two-step annulation method has been developed which features 
stereospecific formation of three contiguous asymmetric centers. 

Since the pioneering work of Robinson, annulation reactions have continued to play a 

central role in organic chemistry.2 Several annulation methodologies have been developed 

in recent years, but only a few of these address the point of stereocontrol of substi- 

tuents attached to the newly formed ring.3 We now report a new annulation methodology, 

developed during the course of studies directed toward aphidicolin (l_)4 total synthesis,5 

which features complete stereocontrol at three contiguous carbon centers. 

As a model for the construction of the A,B rings of aphidicolin, we sought to prepare 

the tricyclic keto lactone 2. We envisioned that 2 might be prepared from three components, 

vinylogous ester 3, cc-thiophenyl butenolide (A),6 - and a two-carbon fragment which might be 

utilized to complete the B ring. 

We have found that the lithium dienolate of 2 (LDA/THF/-78 "C) reacts rapidly with 4_ 

in THF at -95 "C to provide the adduct 5' as a single diastereomer in 96% yield.8 The - 
trans stereochemistry of a and $ butyrolactone substituents was confirmed by oxidation' of 

2 to the corresponding sulfoxide followed by thermal elimination to provide butenolide 6. - 

The stereochemistry at C-9 and C-10 was determined as described below. 
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Scheme I 

Addition of vinyllithium to i (2 eq., THF, 0 'C, 30 min)" provided the hydroxy diene 

5a in 70% yield.8 - Treatment of 5a with 3% HClOa/THF (30 min, 0 "C) gave dienone I7 quanti- - 
tatively.8 Under basic conditions (HaOCH3, CH30H, 25 "C, 1 h), 7 cyclized'l to the tri- 

cyclic enone g,7 again in quantitative yield.8 This annulation sequence (Scheme I) may 

be performed in two synthetic operations in 67% overall yield: (a) Michael addition 

followed by in situ treatment of the enolate of? with vinyllithium and subsequent acidi- -- 

fication to provide 1; (b) cyclization of1 to the enone 3. 

The stereochemical features of this transformation were elucidated as shown in Scheme 

II. Oxidation of sulfide 8 to the corresponding sulfoxide was followed by thermal e'imina- 

tion to provide butenolide z7 as the only product. This sequence unambiguously establishes 

the cis relationship9 between C-8 thiophenyl and C-9 hydrogen in 2. - 
Furthermore, hydrolysis of the butyrolactone moiety of 8 followed by esterification 

with diazomethane provided the cyclic ether E,7 suggesting a cis relationship between - 
C-9 hydrogen and C-10 methyl in butyrolactone S. This suggestion was confirmed by the 

following results. Conversion of S to the corresponding dienol TMS ether (LDA/THF/-78 "C/ 

TMSCl) was followed by treatment with palladium acetate to afford dienone 12.7 Hydrolysis - 
of 12 as before and subsequent esterification then gave cyclic ether 117 in high yield. - - 

Formation of 11 (equatorial H at C-l) is only possible when C-10 methyl and C-9 hydrogen - 

are cis to one another. - 
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Scheme II 

(1) mCPBA 
(2) A 

0 
(1) NaOWEtOHIH,O n~wZ02CH, 
(2) CHZNZ 

The stereospecificity of the Michael addition leading to 2 is noteworthy.12 We 

currently rationalize this result by invoking a lithium ion chelated transition state 

such as 13 '3914 -* 

E 
H3C0 

Studies designed to address this hypothesis are in progress. The application of this 

methodology to aphidicolin total synthesis is also underway. 
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